In this classroom activity, students access sea surface temperature and wind speed data from a NASA site, plot and compare data, draw conclusions about surface current and sea surface temperature, and link their gained understanding to concerns about global climate change.

This static visualization from Global Warming Art depicts the chemical characteristics of eight greenhouse gas molecules - carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), water (H2O), ozone (O3), sulfur hexafluoride (SF6), dichlorodifluoromethane (CFC-12), and trichlorofluoromethane (CFC-11).

This click-through animation visualizes the ice-albedo feedback, soot's effect on sea ice and glacier melt, and ice melt's effect on land and sea.

This interactive visualization from the NASA Earth Observatory website compares Arctic sea ice minimum extent from 1984 to that of 2012.

This video focuses on the conifer forest in Alaska to explore the carbon cycle and how the forest responds to rising atmospheric carbon dioxide. Topics addressed in the video include wildfires, reflectivity, and the role of permafrost in the global carbon cycle.

This animation summarizes how oil and gas form in sedimentary ocean basins. The process starts with dead plankton (organic plant and animal material) being deposited together with mud, sand and other sediments. It describes the process of sapropel, kerogen and hydrocarbon formation.

This short video from Climate Central explains the technology used to monitor changes in Arctic sea ice. Long-term tracking (since the late 1970's) shows Arctic sea ice has been on a steady decline and this could have significant implications for global temperatures.

This video from NASA features scientists who describe the role of salt in the oceans and global oceanic circulation, especially the effect of salinity on the density of water and its global circulation, with reference to global climate change.

This interactive shows the different components of the ocean biological pump, i.e., how carbon in the form of either plankton or particles moves into the ocean's depths. It illustrates the situation at the surface, 0-100 meters, 100-500 meters, and below 500 meters.

This short video describes the Hestia project - a software tool and data model that provide visualizations of localized CO2 emissions from residential, commercial, and vehicle levels, as well as day versus night comparisons, in the city of Indianapolis.

Pages

Hide [X]