This video production is a part of a four-panel report from the National Academies' America's Climate Choices project. The video maps out the realm of our accumulated knowledge regarding climate change and charts a path forward, urging that research on climate change enter a new era focused on the needs of decision makers.

A colorful graphic that depicts the risks to the environment from different degrees of temperature rise. This graphic addresses how risks change as global mean temperature increases.

This interactive video series reviews global warming by recognizing the problem, addressing the sources and impacts, and weighing the options. It is a six-chapter series. Experts from different countries weigh in and answer some critical questions, including what countries have resources and the perspectives necessary to reach a consensus on handling the next steps and the economic costs involved.

With this carbon/temperature interactive model, students investigate the role of atmospheric carbon in the greenhouse effect using a relationship between atmospheric carbon dioxide and global temperature.

This video features CU Boulder Professor Jeff Mitton and his research team, who study the effects of mountain pine beetle infestations on the forest ecology in the Rocky Mountains. They explain the pine beetle life cycle and how they attack trees. An outlook into the future is also provided.

This gallery of ten temperature graphs shows global temperatures on different timescales from decades (recently measured temperatures) to centuries (reconstructed) to millions of years (modeled from ice cores).

This visualization is a map showing the global Climate Demography Vulnerability Index (CDVI) - areas of human population with the highest vulnerability to the impacts of climate change.

One of a suite of online climate interactive simulations, this Greenhouse Gas Simulator uses the bathtub model to demonstrate how atmospheric concentrations of CO2 will continue to rise unless they are lowered to match the amount of CO2 that can be removed through natural processes.

This simulation provides scenarios for exploring the principles of climate dynamics from a multi-disciplinary perspective. Inter-connections among climate issues, public stakeholders and the governance spheres are investigated through creative simulations designed to support learners' understanding of international climate change negotiations.

C-Learn is a simplified version of the C-ROADS simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

Pages