As a segment in PBS's Coping with Climate Change series, Hari Sreenivasan reports on the actions the city of Chicago is taking to mitigate climate change in an urban landscape.

This humorous video suggests what might happen if a weather forecaster reported the weather in the context of climate change. There is a sharp contrast between the anchor focusing on short-term local concerns and the weather forecaster describing what is happening on a long-term global basis.

In this interactive simulation, students can explore global CO2 emissions displayed by different continents/countries and plotted based on the GDP. A map view is also accessible.

This is the ninth and final lesson in a series of lessons about climate change. This lesson focuses on the various activities that humans can do to mitigate the effects of climate change. This includes information on current and predicted CO2 emission scenarios across the globe, alternative energy sources, and how people are currently responding to climate change. Importantly, this lesson is motivating in showing students that they can make a difference.

This video features research conducted at University of Colorado's Institute of Arctic and Alpine Research, which studies isotopes of hydrogen trapped in ice cores to understand climate changes in the past.

This interactive video series reviews global warming by recognizing the problem, addressing the sources and impacts, and weighing the options. It is a six-chapter series. Experts from different countries weigh in and answer some critical questions, including what countries have resources and the perspectives necessary to reach a consensus on handling the next steps and the economic costs involved.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2011, and then back in time to 800,000 years before the present.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

With this carbon/temperature interactive model, students investigate the role of atmospheric carbon in the greenhouse effect using a relationship between atmospheric carbon dioxide and global temperature.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

Pages