This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

This simulation provides scenarios for exploring the principles of climate dynamics from a multi-disciplinary perspective. Inter-connections among climate issues, public stakeholders and the governance spheres are investigated through creative simulations designed to support learners' understanding of international climate change negotiations.

C-Learn is a simplified version of the C-ROADS simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

The Climate Momentum Simulation allows users to quickly compare the resulting sea level rise, temperature change, atmospheric CO2, and global CO2 emissions from six different policy options: 1) Business As Usual, 2) March 2009 Country Proposals, 3) Flatten CO2 emissions by 2025, 4) 29% below 2009 levels by 2040, 5) 80% reduction of global fossil fuel plus a 90% reduction in land use emissions by 2050, and 6) 95 reduction of CO2 emissions by 2020). Based on the more complex C-ROADS simulator.

This Flash-based simulation explores the relationship between carbon emissions and atmospheric carbon dioxide using two main displays: (1) graphs that show the level of human-generated CO2 emissions, CO2 removals, and the level of CO2 in the atmosphere, and (2) a bathtub animation that shows the same information as the graphs. The bathtub simulation illustrates the challenges of reducing greenhouse gas concentrations in the atmosphere.

This video reviews key points as well as pros and cons of nuclear power.

This video explains how geothermal energy can be harvested and used, particularly when the natural resource is in abundance. The video takes us to a geothermal system in Reykjavik, Iceland's capital, which heats the buildings of the entire city by pumping hot water from a geothermal well.

This short video touches briefly on the future of global energy and which energy sources best meet four energy-choice criteria: affordable, available, reliable, and clean.

This video stitches together nine separate videos about energy sources (hydro, coal, geothermal, nuclear, wind, biofuels, solar, natural gas, and oil) from the Switch Energy site. Videos can be viewed as a group, or separately, each under their own title.

This video is one of a series produced by the Switch Energy project. It highlights the use of biofuels as a renewable source of energy.

Pages

Hide [X]