For this lesson, the guiding Concept Question is: What is climate change and how does climate relate to greenhouse gas concentrations over time? This activity is the second lesson in a nine-lesson module 'Visualizing and Understanding the Science of Climate Change' produced by the International Year of Chemistry project (2011).

This is a multi-faceted activity that offers students a variety of opportunities to learn about permafrost through an important sink and source of greenhouse gas (methane), about which most students living in lower latitudes know little.

This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.

This video from NASA features scientists who describe the role of salt in the oceans and global oceanic circulation, especially the effect of salinity on the density of water and its global circulation, with reference to global climate change.

This is an animated interactive simulation that illustrates differential solar heating on a surface in full sunlight versus in the shade.

This lesson is an investigation of the impact of climate change on the phenology of a variety of taxa, including migrating birds and hibernating animals in the Colorado Rockies. Students analyze 40 years of data collected by Billy Barr from the Rocky Mountain Biological Laboratory.

This color-coded map displays a progression of changing five-year average global surface temperatures anomalies from 1880 through 2010. The final frame represents global temperature anomalies averaged from 2006 to 2010. The temperature anomalies are computed relative to the base period 1951-1980.

In this activity, students will use oxygen isotope values of two species of modern coral to reconstruct ambient water temperature over a four-year period. They use Microsoft Excel, or similar application, to create a spreadsheet of temperature values calculated from the isotope values of the corals by means of an algebraic equation. Students then use correlation and regression techniques to determine whether isotope records can be considered to be good proxies for records of past temperatures.

This three-panel figure is an infographic showing how carbon and oxygen isotope ratios, temperature, and carbonate sediments have changed during the Palaeocene-Eocene Thermal Maximum. The figure caption provides sources to scientific articles from which this data was derived. A graphic visualization from the Intergovernmental Panel on Climate Change shows the rapid decrease in carbon isotope ratios that is indicative of a large increase in the atmospheric greenhouse gases CO2 and CH4, which was coincident with approximately 5C of global warming.

This static visualization shows that the global carbon cycle is determined by the interactions of climate, the environment, and Earth's living systems at many levels, from molecular to global.

Pages