This lesson is an investigation of the impact of climate change on the phenology of a variety of taxa, including migrating birds and hibernating animals in the Colorado Rockies. Students analyze 40 years of data collected by Billy Barr from the Rocky Mountain Biological Laboratory.

This Earth Exploration Toolbook chapter is a detailed computer-based exploration in which students learn how various climatic conditions impact the formations of sediment layers on the ocean floor. They analyze sediment core data from the Ross Ice Shelf in Antarctica for evidence of climate changes over time. In addition, they interact with various tools and animations throughout the activity, in particular the Paleontological Stratigraphic Interval Construction and Analysis Tool (PSICAT) that is used to construct a climate change model of a sediment core from core images.

In this role-playing activity, learners are presented with a scenario in which they will determine whether the Gulf Stream is responsible for keeping Europe warm. They must also address the potential future of the Gulf Stream if polar ice were to continue melting. The students work in small groups to identify the issue, discuss the problem, and develop a problem statement. They are then asked what they need to know to solve the problem.

This lab exercise is designed to provide a basic understanding of a real-world scientific investigation. Learners are introduced to the concept of tropospheric ozone as an air pollutant due to human activities and burning of fossil fuel energy. The activity uses, analyzes, and visualizes data to investigate this air pollution and climate change problem, determines the season in which it commonly occurs, and communicates the analysis to others in a standard scientific format.

A detailed Google Earth tour of glacier change over the last 50 years is given in class as an introduction. Students are then asked to select from a group of glaciers and create their own Google Earth tour exploring key characteristics and evident changes in that glacier.

In this intermediate Excel activity, students import US Historical Climate Network mean temperature data into Excel from a station of their choice. They are then guided through the activity on how to use Excel for statistical calculations, graphing, and linear trend estimates. The activity assumes some familiarity with Excel and graphing in Excel.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns and to understand annual sediment deposition and how it relates to weather and climate patterns.

Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

This activity introduces students to visualization capabilities available through NASA's Earth Observatory, global map collection, NASA NEO and ImageJ. Using these tools, students build several animations of satellite data that illustrate carbon pathways through the Earth system.

In this instructional lesson plan, students analyze data from a study on the effects of climate warming on a subalpine meadow in Gothic CO, called the "warming meadow". This long-term experiment provides a means of discovering the actual mechanisms governing ecosystem responses to climate warming.

Pages