A detailed Google Earth tour of glacier change over the last 50 years is given in class as an introduction. Students are then asked to select from a group of glaciers and create their own Google Earth tour exploring key characteristics and evident changes in that glacier.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

In this video from the Polaris Project Website, American and Siberian university students participating in the project describe their research on permafrost.

This teaching activity addresses regional variability as predicted in climate change models for the next century. Using real climatological data from climate models, students will obtain annual predictions for minimum temperature, maximum temperature, precipitation, and solar radiation for Minnesota and California to explore this regional variability. Students import the data into a spreadsheet application and analyze it to interpret regional differences. Finally, students download data for their state and compare them with other states to answer a series of questions about regional differences in climate change.

In this learning activity, students use a web-based geologic timeline to examine temperature, CO2 concentration, and ice cover data to investigate how climate has changed during the last 715 million years.

This lesson is an investigation of the impact of climate change on the phenology of a variety of taxa, including migrating birds and hibernating animals in the Colorado Rockies. Students analyze 40 years of data collected by Billy Barr from the Rocky Mountain Biological Laboratory.

In this intermediate Excel activity, students import US Historical Climate Network mean temperature data into Excel from a station of their choice. They are then guided through the activity on how to use Excel for statistical calculations, graphing, and linear trend estimates. The activity assumes some familiarity with Excel and graphing in Excel.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns and to understand annual sediment deposition and how it relates to weather and climate patterns.

This animation shows predicted changes in temperature across the globe, relative to pre-industrial levels, under two different emissions scenarios in the COP 17 climate model. The first is with emissions continuing to increase through the century. The second is with emissions declining through the century.

This is a global land surface air temperature graphic showing four overlapping time-series datasets based on records from 1961 - 2000.

Pages