This short video shows an example of melting alpine glaciers in the Austrian Alps (Goldberg Glacier). Disappearing alpine glaciers have social and environmental impacts, including the decline of fresh water supplies and contributing to sea level rise.

A detailed Google Earth tour of glacier change over the last 50 years is given in class as an introduction. Students are then asked to select from a group of glaciers and create their own Google Earth tour exploring key characteristics and evident changes in that glacier.

This video highlights a variety of current climate change research initiatives from scientists at the University of Colorado, Boulder. It describes the changing dynamics of Antarctic ice sheets and glaciers and the impacts of reduced Arctic sea ice on people, animals, and global albedo and sea levels, while providing a glimpse of the excitement of this field research through interviews and video clips of scientists in the field.

This is a video that documents the reflections of members of the Steger International Polar Expedition team reunited at the 25th anniversary of their landmark trek to the Arctic, and how climate change has made their trek difficult to replicate.

In this video, a team of paleontologists, paleobotanists, soil scientists, and other researchers take to the field in Wyoming's Bighorn Basin to document how the climate, plants, and animals there changed during the Paleocene- Eocene Thermal Maximum (PETM) when a sudden, enormous influx of carbon flooded the ocean and atmosphere for reasons that are still unclear to scientists. The PTEM is used as an analog to the current warming occurring. The scientists' research may help inform our understanding of current increases in carbon in the atmosphere and ocean and the resulting impact on ecosystems. Supporting materials include essay and interactive overview of animals that existed in the Basin after the PETM event.

This activity engages learners in examining data pertaining to the disappearing glaciers in Glacier National Park. After calculating percentage change of the number of glaciers from 1850 (150) to 1968 (50) and 2009 (26), students move on to the main glacier-monitoring content of the module--area vs. time data for the Grinnell Glacier, one of 26 glaciers that remain in the park. Using a second-order polynomial (quadratic function) fitted to the data, they extrapolate to estimate when there will be no Grinnell Glacier remaining (illustrating the relevance of the question mark in the title of the module).

In this activity, students use Google Earth and team up with fictional students in Chersky, Russia to investigate possible causes of thawing permafrost in Siberia and other Arctic regions. Students explore the nature of permafrost and what the effects of thawing permafrost mean both locally and globally. Next, students use a spreadsheet to explore soil temperature data from permafrost boreholes and surface air temperature datasets from in and around the Chersky region for a 50-year time span.

This video describes the role that dendrochronology plays in understanding climate change, especially changes to high elevation environments at an upper tree line. Dendrochronologists from the Big Sky Institute sample living and dead trees, describe how correlations between trees are made, and explain how tree cores record climate changes.

In this lesson, students identify the relationship between global climate change and Earth's ice volume and sea level. They also interpret climatic history through examining the characteristics and relative ages of layers of ice in an ice core sample.

In this video from the Polaris Project Website, American and Siberian university students participating in the project describe their research on permafrost.

Pages

Hide [X]