This activity focuses on reconstructing the Paleocene-Eocene Thermal Maximum (PETM) as an example of a relatively abrupt global warming period. Students access Integrated Ocean Drilling Program (IODP) sediment core data with Virtual Ocean software in order to display relevant marine sediments and their biostratigraphy.

This teaching activity is an introduction to how ice cores from the cryosphere are used as indicators and record-keepers of climate change as well as how climate change will affect the cryosphere. Students learn through a guided web exercise how scientists analyze ice cores to learn about past climate conditions, how melting sea and land ice will contribute to sea level rise, and what areas of the world would be at risk if Antarctic and/or Greenland ice sheets were to melt away.

In this activity, students download historic temperature datasets and then graph and compare with different locations. As an extension, students can download and examine data sets for other sites to compare the variability of changes at different distinct locations, and it is at this stage where learning can be individualized and very meaningful.

In this activity, students use Google Earth and team up with fictional students in Chersky, Russia to investigate possible causes of thawing permafrost in Siberia and other Arctic regions. Students explore the nature of permafrost and what the effects of thawing permafrost mean both locally and globally. Next, students use a spreadsheet to explore soil temperature data from permafrost boreholes and surface air temperature datasets from in and around the Chersky region for a 50-year time span.

In this activity, students chart temperature changes over time in Antarctica's paleoclimate history by reading rock cores. Students use their data to create an interactive display illustrating how Antarctica's climate timeline can be interpreted from ANDRILL rock cores.

In this activity, students make a model sea floor sediment core using two types of buttons to represent fossil diatoms. They then compare the numbers of diatom fossils in the sediment at different depths to determine whether the seas were free of ice while the diatoms were alive.

This video, from ClimateCentral, features a team of scientists from the Northern Greenland Eemian Ice Drilling Project (NEEM), who study atmospheric air bubbles trapped in an ice core from a period in Greenland's ice sheet which began about 130,000 years ago and lasted about 10,000 years; a period known as the Eemian. The air bubbles from the ancient atmosphere - all aligned on the same time scale - reveal what happened with climate change over that period of time.

This gallery of ten temperature graphs shows global temperatures on different timescales from decades (recently measured temperatures) to centuries (reconstructed) to millions of years (modeled from ice cores).

In this 3-part lesson, students explore California climate and factors that are leading to changes within this climate system. Students begin by exploring California's climate and the state's topography. Next, they investigate coastal versus inland climate. Finally, they use My NASA Data to explore the effects of El NiÃo/La NiÃa on two locations found at the same latitude.

In this video clip, Climate Central's Dr. Heidi Cullen explains that what we've known as "normals" for our climate, during the past decade, will very likely change soon. The new climate normal will provide key information for decisions we make in the future, ranging from what we plant, to what we pay for energy, and even to where we take a vacation.

Pages