This teaching activity addresses regional variability as predicted in climate change models for the next century. Using real climatological data from climate models, students will obtain annual predictions for minimum temperature, maximum temperature, precipitation, and solar radiation for Minnesota and California to explore this regional variability. Students import the data into a spreadsheet application and analyze it to interpret regional differences. Finally, students download data for their state and compare them with other states to answer a series of questions about regional differences in climate change.

This lesson explores El Nino by looking at sea surface temperature, sea surface height, and wind vectors in order to seek out any correlations there may be among these three variables, using the My NASA Data Live Access Server. The lesson guides the students through data representing the strong El Nino from 1997 to 1998. In this way, students will model the methods of researchers who bring their expertise to study integrated science questions.

In this lesson, students examine and interpret varied observational datasets and are asked to determine whether the data supports or does not support the statement: climate change is occurring in Colorado.

The activity takes a hands-on approach to understanding El NiÃo by physically showing and feeling the process. It consists of an El NiÃo demo to be performed by the teacher and observed by the class as well as an experiment to be conducted by the students themselves individually or in pairs to illustrate the connection between water temperature and atmospheric temperature. Students are asked to make conclusions based on their findings and then examine the chain of events stemming from El NiÃo.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns and to understand annual sediment deposition and how it relates to weather and climate patterns.

In this activity, students use Google Earth to explore global temperature changes during a recent 50 - 58 year period. They also explore, analyze, and interpret climate patterns of 13 different cities, and analyze differences between weather and climate patterns.

In this activity, students will use oxygen isotope values of two species of modern coral to reconstruct ambient water temperature over a four-year period. They use Microsoft Excel, or similar application, to create a spreadsheet of temperature values calculated from the isotope values of the corals by means of an algebraic equation. Students then use correlation and regression techniques to determine whether isotope records can be considered to be good proxies for records of past temperatures.

This activity with a lab report instructs students to solve and plot 160,000 years' worth of ice core data from the Vostok ice core using Excel or similar spreadsheets to analyze data. Students learn about ice cores and what they can tell us about past atmospheric conditions and the past atmospheric concentrations of CO2 and CH4.

This activity addresses naturally occurring climate change involving ENSO (El-NiÃo Southern Oscillation). In this activity, students play the role of a policy maker in Peru. First, they determine what sort of ENSO variation is occurring. Then, they must decide how to allocate Peru's resources to manage for possible weather-related problems.

In this activity, students create graphs of real temperature data to analyze climate trends by analyzing the global temperature record from 1867 to the present. Long-term trends and shorter-term fluctuations are both evaluated. The data is examined for evidence of the impact of natural and anthropogenic climate forcing mechanisms on the global surface temperature variability. Students are prompted to determine the difficulties scientists face in using this data to make climate predictions.

Pages