This interactive visualization from the NASA Earth Observatory website compares Arctic sea ice minimum extent from 1984 to that of 2012.

In this instructional lesson plan, students analyze data from a study on the effects of climate warming on a subalpine meadow in Gothic CO, called the "warming meadow". This long-term experiment provides a means of discovering the actual mechanisms governing ecosystem responses to climate warming.

This engaging activity introduces students to the concept of albedo and how albedo relates to Earth's energy balance.

A video from the Extreme Ice Survey in which Dr. Tad Pfeffer and photographer Jim Balog discuss the dynamics of the Columbia glacier's retreat in recent years through this time-lapse movie. Key point: glacier size is being reduced not just by glacial melting but due to a shift in glacial dynamics brought on by climate change.

This video provides a good overview of ice-albedo feedback. Albedo-Climate feedback is a positive feedback that builds student understanding of climate change.

This lesson covers different aspects of the major greenhouse gases - water vapor, carbon dioxide, methane, nitrous oxides and CFCs - including some of the ways in which human activities are affecting the atmospheric concentrations of these key greenhouse gases. This is lesson six in a nine-lesson module about climate change.

This is the seventh of nine lessons in the 'Visualizing and Understanding the Science of Climate Change' website. This lesson addresses climate feedback loops and how these loops help drive and regulate Earth's unique climate system.

This video provides an overview of changes happening in the Arctic.

In this video, students learn that scientific evidence strongly suggests that different regions on Earth do not respond equally to increased temperatures. Ice-covered regions appear to be particularly sensitive to even small changes in global temperature. This video segment adapted from NASA's Goddard Space Flight Center details how global warming may already be responsible for a significant reduction in glacial ice, which may in turn have significant consequences for the planet.

In this video segment, a team of scientists seeks evidence to support their hypothesis that atmospheric warming -- either now or in the past -- may explain why water has formed beneath the West Antarctic ice sheet, causing ice streams that flow much more quickly than the rest of the ice sheet. This phenomenon has important implications for potential sea level rise.

Pages