This hands-on activity explores the driving forces behind global thermohaline circulation.

This animated visualization was created for the planetarium film 'Dynamic Earth'. It illustrates the trail of energy that flows from atmospheric wind currents to ocean currents.

In this activity, students use NASA satellite data to explore the seasonal changes in sea surface temperatures of the Gulf Stream. Students use NASA's Live Active Server (LAS) to generate data of sea surface temperatures in the Gulf Stream, which they then graph and analyze.

This video describes how the normal thousands-of-years-long balance of new ice creation and melting due to ocean currents has been disrupted recently by warmer ocean currents. As a result, glacier tongues that overhang the interface between ice and ocean are breaking off and falling into the ocean.

This Changing Planet video documents scientists' concerns regarding how melting Arctic sea ice will increase the amount of fresh water in the Beaufort Gyre, which could spill out into the Atlantic and cause major climate shifts in North America and Western Europe. The video includes interviews with scientists and a look at the basics of how scientists measure salinity in the ocean and how ocean circulation works in the Arctic.

This video from NASA features scientists who describe the role of salt in the oceans and global oceanic circulation, especially the effect of salinity on the density of water and its global circulation, with reference to global climate change.

This map shows the pattern of thermohaline circulation. This collection of currents is responsible for the large-scale exchange of water masses in the ocean, including providing oxygen to the deep ocean. The entire circulation pattern takes ~2000 years.

In this activity, students model circulation in gyres, explore characteristics of gyres found around the world, and predict the climate impacts of changes to the circulation in these gyres and climate on adjacent land. Gyres, large systems of rotating ocean currents, play an important role in Earth's climate system.

This activity utilizes labs, online resources, and student ideas to build an understanding of polar climates, how changes in polar oceans can affect coastal climates, and how changes in polar regions affect climates elsewhere on Earth.

This video segment uses data-based visual NOAA representations to trace the path of surface ocean currents around the globe and explore their role in creating climate zones. Ocean surface currents have a major impact on regional climate around the world, bringing coastal fog to San Francisco and comfortable temperatures to the British Isles.

Pages