This qualitative graphic illustrates the various factors that affect the amount of solar radiation hitting or being absorbed by Earth's surface such as aerosols, clouds, and albedo.

An interactive visualization tool to examine geocentric seasonal and latitudinal variability in solar energy reaching Earth's surface.

An interactive simulation of Earth's seasonal dynamics that includes the axial tilt and other aspects of Earth's annual cycle.

This is part of a larger lab from the University of Nebraska at Lincoln: http://astro.unl.edu/naap/motion1/motion1.html

This visualization graphically displays temperature and CO2 concentration in the atmosphere as derived from ice core data from 400,000 years ago to 1950. The data originates from UNEP GRID Arendal's graphic library of CO2 levels from Vostok ice core.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance and greenhouse gases on the Earth System.

This 15-panel interactive from NOVA Online describes some of the factors (e.g., Earth's rotation and the sun's uneven heating of Earth's surface) contributing to the formation of the high-speed eastward flows of the jet streams, found near the top of the troposphere. These jet streams play a major role in guiding weather systems.

An applet about the Milankovitch cycle that relates temperature over the last 400,000 years to changes in the eccentricity, precession, and orbital tilt of Earth's orbit.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

This interactive contains four animated slides that introduce the greenhouse effect. An additional animation offers to 'explore more'.

This animated visualization of precession, eccentricity, and obliquity is simple and straightforward, provides text explanations, and is a good starting place for those new to Milankovitch cycles.

Pages

Hide [X]