Hands-on laboratory activity that allows students to investigate the effects of distance and angle on the input of solar radiation at Earth's surface, the role played by albedo, the heat capacity of land and water, and how these cause the seasons. Students predict radiative heating based on simple geometry and experiment to test their hypotheses.

In this hands-on lesson, students measure the effect of distance and inclination on the amount of heat felt by an object and apply this experiment to building an understanding of seasonality. In Part 1, the students set up two thermometers at different distances from a light bulb and record their temperatures to determine how distance from a heat source affects temperature. In Part 2, students construct a device designed to measure the temperature as a function of viewing angle toward the Sun by placing a thermometer inside a black construction paper sleeve, and placing the device at different angles toward the Sun. They then explain how distance and inclination affect heat and identify situations where these concepts apply, such as the seasons on Earth and the NASA Mercury MESSENGER mission.

This three-part, hands-on investigation explores how sunlight's angle of incidence at Earth's surface impacts the amount of solar radiation received in a given area. The activity is supported by PowerPoint slides and background information.

Activity in which students investigate what causes the seasons by doing a series of kinesthetic modeling activities and readings. Activity includes educator background information about how to address common misconceptions about the seasons with students.

In this classroom activity, students analyze visualizations and graphs that show the annual cycle of plant growth and decline. They explore patterns of annual change for the globe and several regions in each hemisphere that have different land cover and will match graphs that show annual green-up and green-down patterns with a specific land cover type.

An interactive that illustrates the relationships between the axial tilt of the Earth, latitude, and temperature. Several data sets (including temperature, Sun-Earth distance, daylight hours) can be collected using this interactive.

This activity engages learners to investigate the impact of Earth's tilt and the angle of solar insolation as the reason for seasons by doing a series of hands-on activities that include scale models. Students plot the path of the Sun's apparent movement across the sky on two days separated by three months of time.

This Motions of the Sun Lab is an interactive applet from the University of Nebraska-Lincoln Astronomy Applet project.

This animation demonstrates the changing declination of the sun with a time-lapse animation. It shows how the shadow of a building changes over the course of a year as the declination of the sun changes.

A computer animation on the reason for the seasons. Voice-over describes the motion of Earth around the sun to show how the sun's light impacts the tilted Earth at different times of the year, causing seasonal changes.

Pages