This animated visualization of precession, eccentricity, and obliquity is simple and straightforward, provides text explanations, and is a good starting place for those new to Milankovitch cycles.

Hands-on laboratory activity that allows students to investigate the effects of distance and angle on the input of solar radiation at Earth's surface, the role played by albedo, the heat capacity of land and water, and how these cause the seasons. Students predict radiative heating based on simple geometry and experiment to test their hypotheses.

This NASA video reviews the role of the sun in driving the climate system. It uses colorful animations to illustrate Earth's energy balance and how increased greenhouse gases are creating an imbalance in the energy budget, leading to warming. The video also reviews how the NASA satellite program collects data on the sun.

This 15-panel interactive from NOVA Online describes some of the factors (e.g., Earth's rotation and the sun's uneven heating of Earth's surface) contributing to the formation of the high-speed eastward flows of the jet streams, found near the top of the troposphere. These jet streams play a major role in guiding weather systems.

This activity supports educators in the use of the activities that accompany the GLOBE Program's Earth System Poster 'Exploring Connections in Year 2007'. Students identify global patterns and connections in environmental data that include soil moisture, insolation, surface temperature, cloud fraction, precipitation, world topography/bathymetry, aerosol optical thickness, and biosphere (from different times of the year) with the goal of recognizing patterns and trends in global data sets.

This engaging activity introduces students to the concept of albedo and how albedo relates to Earth's energy balance.

In this activity students download satellite images displaying land surface temperature, snow cover, and reflected short wave radiation data from the NASA Earth Observation (NEO) Web site. They then explore and animate these images using the free tool ImageJ and utilize the Web-based analysis tools built into NEO to observe, graph, and analyze the relationships among these three variables.

An applet about the Milankovitch cycle that relates temperature over the last 400,000 years to changes in the eccentricity, precession, and orbital tilt of Earth's orbit.

In this classroom activity, students analyze visualizations and graphs that show the annual cycle of plant growth and decline. They explore patterns of annual change for the globe and several regions in each hemisphere that have different land cover and will match graphs that show annual green-up and green-down patterns with a specific land cover type.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

Pages