This short video describes the Hestia project - a software tool and data model that provide visualizations of localized CO2 emissions from residential, commercial, and vehicle levels, as well as day versus night comparisons, in the city of Indianapolis.

This video illustrates conditions under which two infectious diseases - cholera and dengue fever - flourish, and how climate change is likely to exacerbate those conditions.

This video is simple in its appearance, but it contains a wealth of relevant information about global climate models.

This video examines how scientists learn about the effects of climate change on the water cycle and what those effects might mean for our planet.

This video, from the US Department of Energy, shows the basics of how a PV panel converts light radiated from the sun into usable power, whether on the electric grid or off, and without emissions or the use of fossil fuels.

In this activity, students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

This video describes how field research -- in this case, making water measurements in rugged mountain locations -- helps us to understand the complex relationships among changing climate, populations, and water usage.

This video explains what is involved in conducting a home energy audit. Such an audit evaluates how much energy you use in your house and suggests the most cost-effective measures you can take to improve the energy efficiency of your home. The outcomes are the use of less energy resulting in cost-savings on your energy bills.

In this activity, students learn about the tools and methods paleoclimatologists use to reconstruct past climates. In constructing sediment cores themselves, students will achieve a very good understanding of the sedimentological interpretation of past climates that scientists can draw from cores.

Students explore the carbon cycle and the relationship between atmospheric carbon dioxide concentrations and temperature. Students create and compare graphs of carbon dioxide and temperature data from one local (Mauna Loa, Hawaii) meteorological station and one NASA global data set. These graphs, as well as a global vegetation map and an atmospheric wind circulation patterns diagram, are used as evidence to support the scientific claims they develop through their analysis and interpretation.