In this activity, students investigate how sea levels might rise when ice sheets and ice caps melt by constructing a pair of models and seeing the effects of ice melt in two different situations. Students should use their markers to predict the increase of water in each box before the ice melts.

This video focuses on the conifer forest in Alaska to explore the carbon cycle and how the forest responds to rising atmospheric carbon dioxide. Topics addressed in the video include wildfires, reflectivity, and the role of permafrost in the global carbon cycle.

This interactive displays how climate variables are changing over time (temperature, CO2, Arctic sea ice, solar flux, etc.) in graphical form. Students can examine data over the last 20 years or archived data.

This short animated video provides a general overview of the role of carbon dioxide in supporting the Greenhouse Effect.

This video from ClimateCentral looks at the way climate conditions can affect vegetation in the West, and what influence this has on wildfires. Drought and rainfall can have very different wildfire outcomes, depending on vegetation type, extent, and location.

This short investigation from Carbo Europe explores how temperature relates to the solubility of carbon dioxide in water.

In this short but effective demonstration/experiment, students investigate how thermal expansion of water might affect sea level.

In this video from the Polaris Project Website, American and Siberian university students participating in the project describe their research on permafrost.

This long classroom activity introduces students to a climate modeling software. Students visualize how temperature and snow coverage might change over the next 100 years. They run a 'climate simulation' to establish a baseline for comparison, do a 'experimental' simulation and compare the results. Students will then choose a region of their own interest to explore and compare the results with those documented in the IPCC impact reports. Students will gain a greater understanding and appreciation of the process and power of climate modeling.

This graph, based on key ice core data sets and recent monitoring programs, shows the variations in concentration of carbon dioxide (CO2) in the atmosphere during the last 400,000 years.

Pages