This video introduces the concept of daylighting - the use of windows or skylights for natural lighting and temperature regulation - and how it is one building strategy that can save operating costs for homeowners and businesses.

This is a video that discusses how climate feedbacks influence global warming.

This video features residents of Shishmaref, Alaska, plus environmental journalist Elizabeth Kolbert and scientist John Holdren, exploring the human impacts of global climate change. The roles of teachers, scientists, policymakers, and concerned citizens in mitigating the changes are highlighted.

In this activity, students engage in a simulation of the international negotiation process in order to convey how the international community is responding to climate change. Participants learn firsthand about the interests of different countries and the range of policy responses to mitigate future climate change.

Students explore how various energy sources can be used to cause a turbine to rotate and then generate electricity with a magnet.

A video from the Extreme Ice Survey in which Dr. Tad Pfeffer and photographer Jim Balog discuss the dynamics of the Columbia glacier's retreat in recent years through this time-lapse movie. Key point: glacier size is being reduced not just by glacial melting but due to a shift in glacial dynamics brought on by climate change.

This is a basic animation/simulation with background information about the greenhouse effect by DAMOCLES. The animation has several layers to it that allow users to drill into more detail about the natural greenhouse effect and different aspects of it, including volcanic aerosols and human impacts from burning fossil fuels.

In this activity, students explore energy production and consumption by contrasting regional energy production in five different US regions.

In this activity, students are introduced to tree rings by examining a cross section of a tree, also known as a 'tree cookie.' They discover how tree age can be determined by studying the rings and how ring thickness can be used to deduce times of optimal growing conditions. Next, they investigate simulated tree rings applying the scientific method to explore how climatic conditions varied over time.

This detailed animated map shows global weather and climate events from the beginning of 2009 to the present. As the animation plays, specific events are highlighted to provide context and details for the viewer.

Pages