This short video reviews how nations and individuals on Earth can work together to reduce the emission of CO2. It discusses strategies to reduce greenhouse gas emissions (energy conservation, renewable energies, change in energy use) and the role that government can play in this process.

This video describes how geothermal heat resources in California have been tapped to supply 850 MW of electricity. Images and animations show how the area known as The Geysers has been developed to capture steam, produced from trapped rainwater and heated by the earth. Major challenges include finding suitable geothermal resources to develop, and ensuring that underground water is replenished.

This 15-panel interactive from NOVA Online describes some of the factors (e.g., Earth's rotation and the sun's uneven heating of Earth's surface) contributing to the formation of the high-speed eastward flows of the jet streams, found near the top of the troposphere. These jet streams play a major role in guiding weather systems.

This activity focuses on applying analytic tools such as pie charts and bar graphs to gain a better understanding of practical energy use issues. Also provides experience with how different types of data collected affect the outcome of statistical visualization tools.

These flow charts show carbon dioxide emissions for each state, the District of Columbia and the entire United States. Emissions are distinguished by energy source and end use.

In this hands-on activity, students explore whether rooftop gardens are a viable option for combating the urban heat island effect. Guiding question is: Can rooftop gardens reduce the temperature inside and outside houses?

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

The video addresses impact of warming temperatures on major lakes of the world with specific focus on Lake Superior and Lake Tanganyika. It discusses the science of water stratification and its impact on lake ecosystems and on human populations whose livelihoods depend on the lakes.

This static graph of changes in CO2 concentrations is going back 400,000 years, showing the dramatic spike in recent years.

This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

Pages