This video presents predictions and solutions for range shifts (wildlife corridors) by an iconic species of North American wilderness: the wolverine.

These animations depict the three major Milankovitch Cycles that impact global climate, visually demonstrating the definitions of eccentricity, obliquity, and precession, and their ranges of variation and timing on Earth.

This interactive visualization created by FRED (Free Energy Data), displays energy supply (by source) and demand (by use) for each state in the US from 1960 to 2010; forecasts through 2035 are available as well.

FRED is an open platform to help state and local governments, energy planners and policy-makers, private industry, and others to effectively visualize, analyze and compare energy-use data to make better energy decisions and sustainable strategies.

In this activity, students download historic temperature datasets and then graph and compare with different locations. As an extension, students can download and examine data sets for other sites to compare the variability of changes at different distinct locations, and it is at this stage where learning can be individualized and very meaningful.

This lesson plan has students working in small groups to research the Mountain Pine Beetle in Colorado and other inter-mountain Western states. Students identify the factors that control pine beetle population and research how warmer winters and decreasing spring snowpack allow the population of pine beetles to expand.

This is an interactive map that illustrates the scale of potential flooding in Alabama, Mississippi, and Florida due to projected sea level rise. It is a collaborative project of NOAA Sea Grant Consortium and U.S.G.S. It is a pilot project, so there is some possibility that the resource may not be maintained over time.

In this activity, students collect data and analyze the cost of using energy in their homes and investigate one method (switching to compact fluorescent light bulbs) of reducing energy use. This activity provides educators and students with the means to connect 'energy use consequences' and 'climate change causes.' Through examining home energy use and calculating both pollution caused by the generation of electricity and potential savings, students can internalize these issues and share information with their families.

This interactive map allows the user to explore projected alterations of land surfaces in coastal communities, based on different scenarios of sea level changes over time.

This activity is a greenhouse-effect-in-a-bottle experiment. The lesson includes readings from NEED.org and an inquiry lab measuring the effect of carbon dioxide and temperature change in an enclosed environment.

Set of annotated graphs indicating sea level change observed and projected (projections from IPCC 2001).

Pages