A computer animation on the reason for the seasons. Voice-over describes the motion of Earth around the sun to show how the sun's light impacts the tilted Earth at different times of the year, causing seasonal changes.

This video is the second of a three-video series in the Sea Change project, which follows the work of Dr. Maureen Raymo, paleogeologist at Columbia University's Lamont-Doherty Earth Observatory, who travels with fellow researchers to Australia in search of evidence of sea level that was once higher than it is today.

This animation presents the characteristics of wind power as a source of clean energy. The force of moving air generates electricity, by rotating blades around a rotor. The motion of the rotor turns a driveshaft that drives an electric generator.

In this activity, students explore what types of energy resources exist in their state by examining a state map to identify the different energy sources in their state, including the state's renewable energy potential.

This is a global land surface air temperature graphic showing four overlapping time-series datasets based on records from 1961 - 2000.

In this EarthLabs activity, learners explore the concepts of coral bleaching, bleaching hot spots and degree-heating weeks. Using data products from NOAA's Coral Reef Watch, students identify bleaching hot spots and degree-heating weeks around the globe as well as in the Florida Keys' Sombrero Reef to determine the impact higher-than-normal sea surface temperatures have on coral reefs.

This video reviews how photovoltaic (PV) cells work, noting that technological innovations are decreasing costs and allowing PV use to expand.

This visualization is a website with an interactive calculator that allows for estimation of greenhouse gas production from croplands in the United States.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

This NOAA video discusses how the ocean absorbs the increased amount of carbon dioxide released into the atmosphere, thereby changing the pH and buffering action of the ocean. These changes in pH are impacting calcifying organisms, such as corals and shellfish, and related food chains and ecosystems.