This video segment, adapted from NOVA scienceNOW, addresses how new technology can help monitor and modernize the infrastructure of the U.S. power grid, which is ill-equipped to handle our increasing demand for electricity. Video provides a great overview of how electricity is generated and how the grid works.

Students run a simplified computer model to explore how climate conditions can affect caribou, the most abundant grazing animal in the Arctic.

In this intermediate Excel activity, students import US Historical Climate Network mean temperature data into Excel from a station of their choice. They are then guided through the activity on how to use Excel for statistical calculations, graphing, and linear trend estimates. The activity assumes some familiarity with Excel and graphing in Excel.

This activity is a learning game in which student teams are each assigned a different energy source. Working cooperatively, students use their reading, brainstorming, and organizational skills to hide the identity of their team's energy source while trying to guess which energy sources the other teams represent.

This video provides an excellent summary of the role of the oceans and ocean life and makes the point that despite the important role of life in the oceans, there is still much to be learned about the details of the oceanic biota.

This NASA video reviews the role of the sun in driving the climate system. It uses colorful animations to illustrate Earth's energy balance and how increased greenhouse gases are creating an imbalance in the energy budget, leading to warming. The video also reviews how the NASA satellite program collects data on the sun.

This video from a 2005 NOVA program features scientists who study how the Jakobshavn Isbrae glacier in western Greenland is shrinking and moving faster due to increased melting over the past ten years. The video includes footage of scientists in the field explaining methods and animation of ice sheet dynamics leading to faster glacier movement.

This interactive graphic outlines the carbon cycle, with clickable text boxes that explain and elaborate each component.

This interactive exposes students to Earth's atmospheric gases of oxygen, carbon dioxide, and ozone. As the user manipulates the interactive to increase or decrease the concentration of each gas, explanations and images are provided that explain and visualize what the Earth would be like in each scenario.

In this interactive, regionally-relevant carbon cycle game, students are challenged to understand the role of carbon in global climate change. They imagine that they are carbon molecules and travel via different processes through carbon reservoirs on the Colorado Plateau (the Four Corners area of Arizona, Colorado, New Mexico and Utah). This game can be adapted to other regions.

Pages