This video features three faculty from the University of Colorado, Boulder (Beth Osnes, Max Boykoff and James White) and CU students taking action with others to help mitigate climate change at a local level - making personal decisions about energy use and family size, educating the university community about actions that individuals can take, and developing materials to build sustainable housing.

In this activity, students use Google Earth and information from several websites to investigate some of the consequences of climate change in polar regions, including the shrinking of the ice cap at the North Pole, disintegration of ice shelves, melting of Greenland, opening of shipping routes, effects on polar bears, and possible secondary effects on climate in other regions due to changes in ocean currents. Students learn to use satellite and aerial imagery, maps, graphs, and statistics to interpret trends accompanying changes in the Earth system.

In this activity for undergraduates, students explore the CLIMAP (Climate: Long-Range Investigation, Mapping and Prediction) model results for differences between the modern and the Last Glacial Maximum (LGM) and discover the how climate and vegetation may have changed in different regions of the Earth based on scientific data.

This interactive displays how climate variables are changing over time (temperature, CO2, Arctic sea ice, solar flux, etc.) in graphical form. Students can examine data over the last 20 years or archived data.

Students conduct an energy audit to determine how much carbon dioxide their family is releasing into the atmosphere and then make recommendations for minimizing their family's carbon footprint. Students are specifically asked to understand the units of power and energy to determine the cost of running various household appliances. Finding the amount of carbon dioxide emitted for different types of energy and determining ways of reducing carbon dioxide output is the outcome of the lesson.

This short animated video provides a general overview of the role of carbon dioxide in supporting the Greenhouse Effect.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

This short investigation from Carbo Europe explores how temperature relates to the solubility of carbon dioxide in water.

In this short but effective demonstration/experiment, students investigate how thermal expansion of water might affect sea level.

This video segment, adapted from NOVA scienceNOW, addresses how new technology can help monitor and modernize the infrastructure of the U.S. power grid, which is ill-equipped to handle our increasing demand for electricity. Video provides a great overview of how electricity is generated and how the grid works.

Pages