This is the seventh of nine lessons in the 'Visualizing and Understanding the Science of Climate Change' website. This lesson addresses climate feedback loops and how these loops help drive and regulate Earth's unique climate system.

In this activity learners work in pairs or small groups to apply knowledge of energy-wise habits to evaluate energy use in their school and make recommendations for improved efficiency. Students create and use an energy audit tool to collect data and present recommendations to their class. Further communication at the school and district level is encouraged.

In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

This interactive visualization allows users to compare future projections of Wisconsin's average annual temperature with the actual changes of the last five decades. Text on the web page encourages students to think about the challenges Wisconsin could face if these changes occur.

In this video, students explore the work of Jay Keasling, a synthetic biologist experimenting with ways to produce a cleaner-burning fuel from biological matter, using genetically modified microorganisms.

In this video, several scientists identify and describe examples of increasing health problems that they believe are related to climate change.

In this lab activity students generate their own biomass gases by heating wood pellets or wood splints in a test tube. They collect the resulting gases and use the gas to roast a marshmallow. Students also evaluate which biomass fuel is the best by their own criteria or by examining the volume of gas produced by each type of fuel.

This video is part of the Climate Science in a Nutshell video series. This short video looks at the effects of climate change happening right now around the globe, including: more extreme weather events, droughts, forest fires, land use changes, altered ranges of disease-carrying insects, and the loss of some agricultural products. It concludes with a discussion of the differences among weather, climate variability and climate change.

This homework problem introduces students to Marcellus shale natural gas and how an unconventional reservoir rock can become an attractive hydrocarbon target. It is designed to expand students' understanding of hydrocarbon resources by introducing an unconventional natural gas play. Students explore the technological factors that make conventional source rocks attractive reservoir rocks and how this advance impacts both U.S. energy supply and the environment.

In this experiment, students will observe two model atmospheres: one with normal atmospheric composition and another with an elevated concentration of carbon dioxide. These two contained atmospheres will be exposed to light energy from a sunny window or from a lamp. The carbon dioxide is produced by a simple reaction and tested using bromothymol blue (BTB).

Pages