In this video clip, Climate Central's Dr. Heidi Cullen explains that what we've known as "normals" for our climate, during the past decade, will very likely change soon. The new climate normal will provide key information for decisions we make in the future, ranging from what we plant, to what we pay for energy, and even to where we take a vacation.

This lab exercise is designed to provide a basic understanding of a real-world scientific investigation. Learners are introduced to the concept of tropospheric ozone as an air pollutant due to human activities and burning of fossil fuel energy. The activity uses, analyzes, and visualizes data to investigate this air pollution and climate change problem, determines the season in which it commonly occurs, and communicates the analysis to others in a standard scientific format.

This video discusses observations of two key warning signs of global change effects on the Southern Ocean: changes in Antarctic bottom water and ocean acidification.

A colorful graphic that depicts the risks to the environment from different degrees of temperature rise. This graphic addresses how risks change as global mean temperature increases.

In this JAVA-based interactive modeling activity, students are introduced to the concept of mass balance, flow rates, and equilibrium using a simple water bucket model. Students can vary flow rate into the bucket, initial water level in the bucket, and residence time of water in the bucket. After running the model, the bucket's water level as a function of time is presented graphically and in tabular form.

This well-designed experiment compares CO2 impacts on salt water and fresh water. In a short demonstration, students examine how distilled water (i.e., pure water without any dissolved ions or compounds) and seawater are affected differently by increasing carbon dioxide in the air.

In this activity, students will practice the steps involved in a scientific investigation as they learn why ice formations on land (and not those on water) will cause a rise in sea level upon melting. This is a discovery lesson in ice and water density and displacement of water by ice floating on the surface as it relates to global climate change.

This video and accompanying essay review the impacts of rising surface air temperatures and thawing permafrost on ecosystems, geology, and native populations in Alaska.

This video features Dr. Gary Griggs, scientist with the National Research Council (NRC) and professor at UCSC, reviewing highlights from the recently released report by the NRC about predictions for sea-level rise on the West Coast states. The video includes effective visualizations and animations of the effects of plate tectonics and sea-level rise on the West Coast.

Key figure from the 2007 Intergovernmental Panel on Climate Change (IPCC) report that shows changes in global average surface temperature, global average sea level, and Northern Hemisphere snow cover from as far back as 1850.

Pages