This web-based activity tackles the broad reasons for undertaking ocean exploration - studying the interconnected issues of climate change, ocean health, energy and human health. Students examine the types of technology ocean scientists use to collect important data.

This short video, the sixth in the National Academies Climate Change, Lines of Evidence series, explores the hypothesis that changes in solar energy output may be responsible for observed global surface temperature rise. Several lines of evidence, such as direct satellite observations, are reviewed.

Students examine data from Mauna Loa to learn about CO2 in the atmosphere. The students also examine how atmospheric CO2 changes through the seasonal cycle, by location on Earth, and over about 40 years and more specifically over 15 years. Students graph data in both the Northern and Southern Hemisphere and draw conclusions about hemispherical differences in CO2 release and uptake.

This humorous video suggests what might happen if a weather forecaster reported the weather in the context of climate change. There is a sharp contrast between the anchor focusing on short-term local concerns and the weather forecaster describing what is happening on a long-term global basis.

This video from NASA features scientists who describe the role of salt in the oceans and global oceanic circulation, especially the effect of salinity on the density of water and its global circulation, with reference to global climate change.

This short video shows how humanity uses energy today; what sources we use; and why, in the future, a growing global population will require more energy.

Activity is a Project BudBurst/National Ecological Observatory Network (NEON) exploration of eco-climactic domains, as defined by NEON, by investigating characteristics of a specific domain and studying two representative plants in that domain.

This animation demonstrates the changing declination of the sun with a time-lapse animation. It shows how the shadow of a building changes over the course of a year as the declination of the sun changes.

This Earth Exploration Toolbook chapter is a detailed computer-based exploration in which students learn how various climatic conditions impact the formations of sediment layers on the ocean floor. They analyze sediment core data from the Ross Ice Shelf in Antarctica for evidence of climate changes over time. In addition, they interact with various tools and animations throughout the activity, in particular the Paleontological Stratigraphic Interval Construction and Analysis Tool (PSICAT) that is used to construct a climate change model of a sediment core from core images.

This visualization, from the US Geological Survey, provides a simple schematic of the various pathways that water can take as it cycles through ocean, lakes, atmosphere, surface and ground.