This video highlights the work of climate scientists in the Amazon who research the relationship between deforestation, construction of new dams, and increased amounts of greenhouse gases being exchanged between the biosphere and the atmosphere.

In this activity, students construct a Global Warming Wheel Card, a hand-held tool that they can use to estimate their household's emissions of carbon dioxide and learn how they can reduce them. One side of the wheel illustrates how much carbon dioxide a household contributes to the atmosphere per year through activities such as driving a car, using energy in the home, and disposing of waste. The other side shows how changes in behavior can reduce personal emissions.

This graphic depicts evidence for a human fingerprint on climate change based on multiple sets of independent observations. The graphic is available to study at three levels - basic, intermediate, and advanced understanding, with substantial support for students to investigate the evidence themselves and draw their own conclusions.

In this activity, students investigate how sea levels might rise when ice sheets and ice caps melt by constructing a pair of models and seeing the effects of ice melt in two different situations. Students should use their markers to predict the increase of water in each box before the ice melts.

In this investigation learners research the effects of melting sea ice in the Bering Sea Ecosystem. They create research proposals to earn a place on the scientific research vessel Healy and present their findings and proposals to a Research Board committee.

This NOAA video discusses how the ocean absorbs the increased amount of carbon dioxide released into the atmosphere, thereby changing the pH and buffering action of the ocean. These changes in pH are impacting calcifying organisms, such as corals and shellfish, and related food chains and ecosystems.

In this lab activity, students use a chemical indicator (bromothymol blue) to detect the presence of carbon dioxide in animal and plant respiration and in the burning of fossil fuels and its absence in the products of plant photosynthesis. After completing the five parts of this activity, students compare the colors of the chemical indicator in each part and interpret the results in terms of the qualitative importance of carbon sinks and sources.

This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

In this activity, students analyze data detailing global energy sources and sinks (uses) and construct a diagram to show the relative scale and the connections between them. Discussions of scale; historical, socio-environmental, and geographic variation in this data; and implications for future energy use are included.

In this TED talk, Wall Street Journal science columnist Lee Hotz describes the research of the Western Antarctic Ice Sheet (WAIS) Divide project, in which scientists examine ice core records of climate change in the past to find clues to climate change in the future.

Pages