This narrated slide show gives a brief overview of coral biology and how coral reefs are in danger from pollution, ocean temperature change, ocean acidification, and climate change. In addition, scientists discuss how taking cores from corals yields information on past changes in ocean temperature.

This video highlights a variety of current climate change research initiatives from scientists at the University of Colorado, Boulder. It describes the changing dynamics of Antarctic ice sheets and glaciers and the impacts of reduced Arctic sea ice on people, animals, and global albedo and sea levels, while providing a glimpse of the excitement of this field research through interviews and video clips of scientists in the field.

This video from NASA features scientists who describe the role of salt in the oceans and global oceanic circulation, especially the effect of salinity on the density of water and its global circulation, with reference to global climate change.

An attractive concept/mind map that illustrates various human strategies for responding to climate change. It was developed by a psychologist and not by an educator or scientist but can be used to inspire discussion and artistic representations of the human dimension to climate and energy issues.

A series of activities designed to introduce students to the role of sediments and sedimentary rocks in the global carbon cycle and the use of stable carbon isotopes to reconstruct ancient sedimentary environments. Students will make some simple calculations, think about the implications of their results, and see an optional demonstration of the density separation of a sediment sample into a light, organic and a heavier mineral fraction.

Activity is a Project BudBurst/National Ecological Observatory Network (NEON) exploration of eco-climactic domains, as defined by NEON, by investigating characteristics of a specific domain and studying two representative plants in that domain.

This visualization, from the US Geological Survey, provides a simple schematic of the various pathways that water can take as it cycles through ocean, lakes, atmosphere, surface and ground.

This interactive diagram from the National Academy of Sciences shows how we rely on a variety of primary energy sources (solar, nuclear, hydro, wind, geothermal, natural gas, coal, biomass, oil) to supply energy to four end-use sectors (residential, commercial, industrial, and transportation). It also focuses on lost or degraded energy.

This hands-on activity will provide students with an understanding of the issues that surround environmental clean-up. Students will create their own oil spill, try different methods for cleaning it up, and then discuss the merits of each method in terms of effectiveness (cleanliness) and cost. They will be asked to put themselves in the place of both an environmental engineer and an oil company owner who are responsible for the clean-up.

This short video examines the recent melting ice shelves in the Antarctica Peninsula; the potential collapse of West Antarctic ice shelf; and how global sea levels, coastal cities, and beaches would be affected.

Pages