This static graph of changes in CO2 concentrations is going back 400,000 years, showing the dramatic spike in recent years.

In this activity students trace the sources of their electricity, heating and cooling, and other components of their energy use though the use of their family's utility bills and information from utility and government websites.

This lesson is comprised of three activities (three class periods). Students use web-based animations to explore the impacts of ice melt and changes to sea level. Students are introduced to topographic maps by doing a hands-on activity to model the contours of an island. Students examine the relationship between topography and sea level change by mapping changing shorelines using a topographic map.

The heart of this activity is a laboratory investigation that models the production of silicon. The activity is an investigation of silicon: the sources, uses, properties, importance in the fields of photovoltaics (solar cells/renewable energy) and integrated circuits industries, and, to a limited extent, environmental impact of silicon production.

This video is one of a series produced by the Switch Energy project. It reviews the pros and cons of natural gas as a source of energy.

This map shows how much electrical power is produced from wind in each state from 1999 through 2010. The animation shows a general increase in the amount of wind power produced per state and the number of states producing it.

In this activity, students collect data and analyze the cost of using energy in their homes and investigate one method (switching to compact fluorescent light bulbs) of reducing energy use. This activity provides educators and students with the means to connect 'energy use consequences' and 'climate change causes.' Through examining home energy use and calculating both pollution caused by the generation of electricity and potential savings, students can internalize these issues and share information with their families.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

This multi-part activity introduces users to normal seasonal sea surface temperature (SST) variation as well as extreme variation, as in the case of El NiÃo and La NiÃa events, in the equatorial Pacific Ocean. Via a THREDDS server, users learn how to download seasonal SST data for the years 1982 to 1998. Using a geographic information system (GIS), they visualize and analyze that data, looking for the tell-tale SST signature of El Nino and La Nina events that occurred during that time period. At the end, students analyze a season of their own choosing to determine if an El NiÃo or La NiÃa SST pattern emerged in that year's data.

This video describes the effect of a warming climate on the tundra biome and specifically the impacts of changing climate on the Rocky Mountain Pika, a small rodent that struggles with summer heat.

Pages