One of a suite of online climate interactive simulations, this Greenhouse Gas Simulator uses the bathtub model to demonstrate how atmospheric concentrations of CO2 will continue to rise unless they are lowered to match the amount of CO2 that can be removed through natural processes.

In this short video, host Dr. Ryan interviews graduate student Amy Steiker at the Institute of Arctic and Alpine Research about her research, using isotopes of nitrous oxide, connecting human activity to greenhouse gas emissions.

This activity introduces students to the process of converting sunlight into electricity through the use of photovoltaics (solar cells). Students complete a reading passage with questions and an inquiry lab using small photovoltaic cells.

In this activity learners investigate the link between ocean temperatures and hurricane intensity, analyze instrumental and historical data, and explore possible future changes.

This video follows biologist Gretchen Hofmann as she studies the effects of ocean acidification on sea urchin larvae.

This activity with a lab report instructs students to solve and plot 160,000 years' worth of ice core data from the Vostok ice core using Excel or similar spreadsheets to analyze data. Students learn about ice cores and what they can tell us about past atmospheric conditions and the past atmospheric concentrations of CO2 and CH4.

This video is from the Energy 101 video series. It explains the process for converting micro-algae into fuel and makes the case that algae-based biofuels hold enormous potential for helping reduce our dependence on imported oil.

This video is narrated by climate scientist Richard Alley. It examines studies US Air Force conducted over 50 years ago on the warming effects of CO2 in the atmosphere and how that could impact missile warfare. The video then focuses on the Franz Josef glacier in New Zealand; the glacier is used to demonstrate glaciers formation, depth of snow fall in the past, and understand atmospheric gases and composition during the last Ice Age. Supplemental resources are available through the website.

This activity engages learners to investigate the impact of Earth's tilt and the angle of solar insolation as the reason for seasons by doing a series of hands-on activities that include scale models. Students plot the path of the Sun's apparent movement across the sky on two days separated by three months of time.

In this video, the mountain pine beetle problem is explained by two scientist. Their research investigates the beetle and how climate change is impacting its spread.

Pages