This 3-part interactive and virtual lab activity examines the life cycle of the sea urchin, and how the increasing acidity of the ocean affects their larval development.

This well-designed experiment compares CO2 impacts on salt water and fresh water. In a short demonstration, students examine how distilled water (i.e., pure water without any dissolved ions or compounds) and seawater are affected differently by increasing carbon dioxide in the air.

This activity includes an assessment, analysis, and action tool that can be used by classrooms to promote understanding of how the complex current issues of energy, pollution, supply and consumption are not just global but also local issues.

This teaching activity addresses environmental stresses on corals. Students assess coral bleaching using water temperature data from the NOAA National Data Buoy Center. Students learn about the habitat of corals, the stresses on coral populations, and the impact of increased sea surface temperatures on coral reefs. In a discussion section, the connection between coral bleaching and global warming is drawn.

In this learning activity, students use a web-based geologic timeline to examine temperature, CO2 concentration, and ice cover data to investigate how climate has changed during the last 715 million years.

This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

This video features research conducted at University of Colorado's Institute of Arctic and Alpine Research, which studies isotopes of hydrogen trapped in ice cores to understand climate changes in the past.

In this activity, students investigate how sea levels might rise when ice sheets and ice caps melt by constructing a pair of models and seeing the effects of ice melt in two different situations. Students should use their markers to predict the increase of water in each box before the ice melts.

In this classroom activity, students measure the energy use of various appliances and electronics and calculate how much carbon dioxide (CO2) is released to produce that energy.

This animation depicts global surface warming as simulated by NCAR's Community Climate System Model (CCSM) Version 3. It shows the temperature anomalies relative to the end of the 19th century (1870-1899), both over the entire globe and as a global average. The model shows the temporary cooling effects during the 5 major volcanic eruptions of this time period, and then the model's estimates of warming under the different scenarios taken from the fourth IPCC report.