This video looks at the impact of changing climate on animal habitats around the world, showing how different creatures are responding to changing temperatures and precipitation patterns.

This figure, the famous Keeling Curve, shows the history of atmospheric carbon dioxide concentrations as directly measured at Mauna Loa, Hawaii. This curve is an essential piece of evidence that shows the increased greenhouse gases that cause recent increases in global temperatures.

This video shows 15 years of data obtained via Polar-orbiting satellites that are able to detect subtle differences in ocean color, allowing scientists to see where there are higher concentrations of phytoplankton - a proxy for the concentration of chlorophyll in the ocean.

This activity includes an assessment, analysis, and action tool that can be used by classrooms to promote understanding of how the complex current issues of energy, pollution, supply and consumption are not just global but also local issues.

In this video segment, two students discuss the greenhouse effect and visit with research scientists at Biosphere 2 in Arizona, who research the effects of global climate change on organisms in a controlled facility. Their current research (as of 2002) focuses on the response to increased quantities of CO2 in a number of different model ecosystems.

This is a global land surface air temperature graphic showing four overlapping time-series datasets based on records from 1961 - 2000.

This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

This video examines how scientists learn about the effects of climate change on the water cycle and what those effects might mean for our planet.

The activity takes a hands-on approach to understanding El NiÃo by physically showing and feeling the process. It consists of an El NiÃo demo to be performed by the teacher and observed by the class as well as an experiment to be conducted by the students themselves individually or in pairs to illustrate the connection between water temperature and atmospheric temperature. Students are asked to make conclusions based on their findings and then examine the chain of events stemming from El NiÃo.

In this hands-on engineering activity, students will build a tabletop wind turbine. Students get acquainted with the basics of wind energy and power production by fabricating and testing various blade designs for table-top windmills constructed from one-inch PVC pipe and balsa wood (or recycled materials). The activity includes lots of good media and Web resources supporting the science content.

Pages