This animation illustrates how the hardiness zones for plants have changed between 1990 and 2006 based on an extensive updating of U.S. Hardiness Zones using data from 5,000 National Climatic Data Center cooperative stations across the continental United States.

Cartoon animation focusing on adapting to climate change, specifically in Wisconsin, by helping the community prepare for changes that are already impacting the region.

This set of six interactive slides showcases how a typical photovoltaic cell converts solar energy into electricity. Explore the components of a photovoltaic cell, including the silicon layers, metal backing, antireflective coating, and metal conductor strips. Using animations, investigate why the silicon layers are doped with phosphorous and boron, and how an electric field is used to generate electricity from sunlight.

This interactive diagram from the National Academy of Sciences shows how we rely on a variety of primary energy sources (solar, nuclear, hydro, wind, geothermal, natural gas, coal, biomass, oil) to supply energy to four end-use sectors (residential, commercial, industrial, and transportation). It also focuses on lost or degraded energy.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns and to understand annual sediment deposition and how it relates to weather and climate patterns.

This video shows 15 years of data obtained via Polar-orbiting satellites that are able to detect subtle differences in ocean color, allowing scientists to see where there are higher concentrations of phytoplankton - a proxy for the concentration of chlorophyll in the ocean.

These animations depict the three major Milankovitch Cycles that impact global climate, visually demonstrating the definitions of eccentricity, obliquity, and precession, and their ranges of variation and timing on Earth.

This online calculator converts from one energy unit to another - from gallons to British thermal units (Btu), kilowatt/hours to megajoules, short tons to metric tons.

This is a global land surface air temperature graphic showing four overlapping time-series datasets based on records from 1961 - 2000.

In this activity, students learn about the urban heat island effect by investigating which areas of their schoolyard have higher temperatures - trees, grass, asphalt, and other materials. Based on their results, they hypothesize how concentrations of surfaces that absorb heat might affect the temperature in cities - the urban heat island effect. Then they analyze data about the history of Los Angeles heat waves and look for patterns in the Los Angeles climate data and explore patterns.