The activity takes a hands-on approach to understanding El NiÃo by physically showing and feeling the process. It consists of an El NiÃo demo to be performed by the teacher and observed by the class as well as an experiment to be conducted by the students themselves individually or in pairs to illustrate the connection between water temperature and atmospheric temperature. Students are asked to make conclusions based on their findings and then examine the chain of events stemming from El NiÃo.

This activity is a greenhouse-effect-in-a-bottle experiment. The lesson includes readings from NEED.org and an inquiry lab measuring the effect of carbon dioxide and temperature change in an enclosed environment.

This video follows biologist Gretchen Hofmann as she studies the effects of ocean acidification on sea urchin larvae.

This well-designed experiment compares CO2 impacts on salt water and fresh water. In a short demonstration, students examine how distilled water (i.e., pure water without any dissolved ions or compounds) and seawater are affected differently by increasing carbon dioxide in the air.

In this activity, students will learn the difference between sea ice and glaciers in relation to sea level rise. They will create and explore topographic maps as a means of studying sea level rise and how it will affect Alaska's coastline.

This video from Earth: The Operators' Manual describes how fossil fuels are made, and it compares how long it takes to create coal, oil and natural gas (millions of years), with how fast we're using them (hundreds of years). Narrated by Dr. Richard Alley.

This static visualization from Global Warming Art depicts the chemical characteristics of eight greenhouse gas molecules - carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), water (H2O), ozone (O3), sulfur hexafluoride (SF6), dichlorodifluoromethane (CFC-12), and trichlorofluoromethane (CFC-11).

This video segment is adapted from Building Big, a PBS series hosted by David Macaulay. It explores Hoover Dam's hydroelectric capabilities by explaining how it is able to harness the potential energy stored in the reservoir and convert it to electricity. It also discusses environmental impacts of the dam and others like it.

This interactive visualization from the NASA Earth Observatory website compares Arctic sea ice minimum extent from 1984 to that of 2012.

In this activity, students explore what types of energy resources exist in their state by examining a state map to identify the different energy sources in their state, including the state's renewable energy potential.

Pages