In this video, students learn how scientific surveys of wildlife are performed at a site in Yosemite, California, and how these surveys are being used -- in conjunction with studies from the early 1900s -- to provide evidence that animal populations in Yosemite have shifted over time in response to rising temperatures.

In this video a scientist explains how DNA extracted from ancient tree remains provides insights about how trees/plants have adapted, over time, to changes in CO2 in the atmosphere. Her lab research investigates changes in plant genotypes under experimental conditions that simulate potential changes in CO2 levels in the future.

This short animated video provides a general overview of the role of carbon dioxide in supporting the Greenhouse Effect.

This video segment uses data-based visual NOAA representations to trace the path of surface ocean currents around the globe and explore their role in creating climate zones. Ocean surface currents have a major impact on regional climate around the world, bringing coastal fog to San Francisco and comfortable temperatures to the British Isles.

This video documents the impact of the 2011 drought on the water supply of two Texas towns. It discusses how the higher temperatures have increased the evaporation from open reservoirs, resulting in a drop in their water levels. The use of water in fighting wildfires has also contributed to this drawdown. While some jurisdictions have been able to develop pipelines to other sources, others have had to resort to trucking water in.

In this video, students learn that scientific evidence strongly suggests that different regions on Earth do not respond equally to increased temperatures. Ice-covered regions appear to be particularly sensitive to even small changes in global temperature. This video segment adapted from NASA's Goddard Space Flight Center details how global warming may already be responsible for a significant reduction in glacial ice, which may in turn have significant consequences for the planet.

A collection of repeat photography of glaciers from the National Snow and Ice Data Center (NSIDC). The photos are taken years apart at or near the same location, illustrating how dramatically glacier positions can change even over a relatively short period in geological time: 60 to 100 years. Background essay and discussion questions are included.

This NASA animation depicts thermohaline circulation in the ocean and how it relates to salinity and water density. It illustrates the sinking of water in the cold, dense ocean near Iceland and Greenland. The surface of the ocean then fades away and the animation pulls back to show the global thermohaline circulation system.

In this lesson, students explore several facets of the impact of volcanic eruptions on the atmosphere. Students analyze three types of visual information: a graph of aerosol optical depth v. global temperature, a global map with temperature anomalies, and an ash plume photograph. In the hands-on activity, students use math to determine the rate and estimated time of arrival of an ash plume at an airfield.

This engaging activity introduces students to the concept of albedo and how albedo relates to Earth's energy balance.

Pages