This is a figure from the 2007 IPCC Assessment Report 4 on atmospheric concentrations of carbon dioxide, methane and nitrous oxide over the last 10,000 years (large panels) and since 1750 (inset panels).

This homework problem introduces students to Marcellus shale natural gas and how an unconventional reservoir rock can become an attractive hydrocarbon target. It is designed to expand students' understanding of hydrocarbon resources by introducing an unconventional natural gas play. Students explore the technological factors that make conventional source rocks attractive reservoir rocks and how this advance impacts both U.S. energy supply and the environment.

This simulation provides scenarios for exploring the principles of climate dynamics from a multi-disciplinary perspective. Inter-connections among climate issues, public stakeholders and the governance spheres are investigated through creative simulations designed to support learners' understanding of international climate change negotiations.

This webpage contains two videos that show climate visualizations created by super computers. Both videos show climate changes that may occur during the 21st Century due to human activities based on IPCC science.

This animation illustrates how heat energy from deep in Earth can be utilized to generate electricity at a large scale.

This short video touches briefly on the future of global energy and which energy sources best meet four energy-choice criteria: affordable, available, reliable, and clean.

This static visualization shows that the global carbon cycle is determined by the interactions of climate, the environment, and Earth's living systems at many levels, from molecular to global.

This color-coded map displays a progression of changing five-year average global surface temperatures anomalies from 1880 through 2010. The final frame represents global temperature anomalies averaged from 2006 to 2010. The temperature anomalies are computed relative to the base period 1951-1980.

This long classroom activity introduces students to a climate modeling software. Students visualize how temperature and snow coverage might change over the next 100 years. They run a 'climate simulation' to establish a baseline for comparison, do a 'experimental' simulation and compare the results. Students will then choose a region of their own interest to explore and compare the results with those documented in the IPCC impact reports. Students will gain a greater understanding and appreciation of the process and power of climate modeling.

For this lesson, the guiding Concept Question is: What is climate change and how does climate relate to greenhouse gas concentrations over time? This activity is the second lesson in a nine-lesson module 'Visualizing and Understanding the Science of Climate Change' produced by the International Year of Chemistry project (2011).

Pages