This video describes how concentrating solar power (CSP) technologies reflect and collect solar energy to generate electricity. This video explains what CSP is, how it works, and focuses on parabolic troughs.

This video highlights a variety of current climate change research initiatives from scientists at the University of Colorado, Boulder. It describes the changing dynamics of Antarctic ice sheets and glaciers and the impacts of reduced Arctic sea ice on people, animals, and global albedo and sea levels, while providing a glimpse of the excitement of this field research through interviews and video clips of scientists in the field.

In this learning activity, students use a web-based geologic timeline to examine temperature, CO2 concentration, and ice cover data to investigate how climate has changed during the last 715 million years.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns and to understand annual sediment deposition and how it relates to weather and climate patterns.

This video segment, adapted from NOVA scienceNOW, addresses how new technology can help monitor and modernize the infrastructure of the U.S. power grid, which is ill-equipped to handle our increasing demand for electricity. Video provides a great overview of how electricity is generated and how the grid works.

This video shows some of the most dramatic fluctuations to our cryosphere in recent years, using visuals created with a variety of satellite-based data.

Students go through the design process and the scientific method to test the effect of blade design on power output. There is an optional extension to use the data to create an optimal set of wind turbine blades.

This teaching activity is an introduction to how ice cores from the cryosphere are used as indicators and record-keepers of climate change as well as how climate change will affect the cryosphere. Students learn through a guided web exercise how scientists analyze ice cores to learn about past climate conditions, how melting sea and land ice will contribute to sea level rise, and what areas of the world would be at risk if Antarctic and/or Greenland ice sheets were to melt away.

This interactive shows the different components of the ocean biological pump, i.e., how carbon in the form of either plankton or particles moves into the ocean's depths. It illustrates the situation at the surface, 0-100 meters, 100-500 meters, and below 500 meters.

In this role-playing activity, learners are presented with a scenario in which they will determine whether the Gulf Stream is responsible for keeping Europe warm. They must also address the potential future of the Gulf Stream if polar ice were to continue melting. The students work in small groups to identify the issue, discuss the problem, and develop a problem statement. They are then asked what they need to know to solve the problem.

Pages