This interactive diagram from the National Academy of Sciences shows how we rely on a variety of primary energy sources (solar, nuclear, hydro, wind, geothermal, natural gas, coal, biomass, oil) to supply energy to four end-use sectors (residential, commercial, industrial, and transportation). It also focuses on lost or degraded energy.

In this activity, students download historic temperature datasets and then graph and compare with different locations. As an extension, students can download and examine data sets for other sites to compare the variability of changes at different distinct locations, and it is at this stage where learning can be individualized and very meaningful.

This video features changes in the land, sea, and animals that are being observed by the residents of Sachs Harbour, Northwest Territories, Canada â many of whom hunt, trap, and fishâbecause of their long-standing and intimate connection with their ecosystem. Scientists interview the residents and record their observations in order to deepen our understanding of climate change in the polar region. Background essay and discussion questions are included.

This introductory video describes the basic principles of residential geothermal heat pumps.

This visualization is a website with an interactive calculator that allows for estimation of greenhouse gas production from croplands in the United States.

This is a graph of marine air temperature anomalies over the past 150 years. Five different marine air temperature anomaly datasets from different sources are compared on the one graph.

This is the first of three short videos showcasing the dramatic changes in Alaska's marine ecosystems through interviews with scientists and Alaska Natives. This introduction to the impacts of climate change in Alaska includes interviews with Alaska Natives, commentary by scientists, and footage from Alaska's Arctic.

This video addresses the impact of climate change on several butterfly populations. Warming temperatures lead to shifts in location of populations of butterflies or die-offs of populations unable to adapt to changing conditions or shift to new locations.

In this activity, students use a spreadsheet to calculate the net carbon sequestration in a set of trees; they will utilize an allometric approach based upon parameters measured on the individual trees. They determine the species of trees in the set, measure trunk diameter at a particular height, and use the spreadsheet to calculate carbon content of the tree using forestry research data.

The figure summarizes some of the key variations amongst the six illustrative scenarios used by the Intergovernmental Panel on Climate Change (IPCC) in considering possible future emissions of greenhouse gases during the 21st century.