This interactive map from National Geographic shows selected geographic locations for a number of impacts of global warming (on freshwater resources, food and forests, ecosystems, etc). Impact overview is summarized for each highlighted impact.

In this lab activity students generate their own biomass gases by heating wood pellets or wood splints in a test tube. They collect the resulting gases and use the gas to roast a marshmallow. Students also evaluate which biomass fuel is the best by their own criteria or by examining the volume of gas produced by each type of fuel.

In this video, the mountain pine beetle problem is explained by two scientist. Their research investigates the beetle and how climate change is impacting its spread.

A video from the Extreme Ice Survey in which Dr. Tad Pfeffer and photographer Jim Balog discuss the dynamics of the Columbia glacier's retreat in recent years through this time-lapse movie. Key point: glacier size is being reduced not just by glacial melting but due to a shift in glacial dynamics brought on by climate change.

This introductory video summarizes the process of generating solar electricity from photovoltaic and concentrating (thermal) solar power technologies.

Video and animations of sea level from NASA's Climate website. Since 1992, NASA and CNES have studied sea surface topography as a proxy for ocean temperatures. NASA Missions TOPEX/Poseidon, Jason 1 and Jason 2 have been useful in predicting major climate, weather, and geologic events including El Nino, La Nina, Hurricane Katrina, and the Indian Ocean Tsunami.

This static visualization from Global Warming Art depicts the chemical characteristics of eight greenhouse gas molecules - carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), water (H2O), ozone (O3), sulfur hexafluoride (SF6), dichlorodifluoromethane (CFC-12), and trichlorofluoromethane (CFC-11).

This visualization is a website with an interactive calculator that allows for estimation of greenhouse gas production from croplands in the United States.

This animation shows predicted changes in temperature across the globe, relative to pre-industrial levels, under two different emissions scenarios in the COP 17 climate model. The first is with emissions continuing to increase through the century. The second is with emissions declining through the century.

These animations depict the three major Milankovitch Cycles that impact global climate, visually demonstrating the definitions of eccentricity, obliquity, and precession, and their ranges of variation and timing on Earth.