This video features CU Boulder Professor Jeff Mitton and his research team, who study the effects of mountain pine beetle infestations on the forest ecology in the Rocky Mountains. They explain the pine beetle life cycle and how they attack trees. An outlook into the future is also provided.

Students will use real satellite data to determine 1) where the greatest concentrations of aerosols are located during the course of a year in the tropical Atlantic region and 2) their source of origin. This is an inquiry-style lesson where students pull real aerosol data and attempt to identify trends among data sets.

With this carbon/temperature interactive model, students investigate the role of atmospheric carbon in the greenhouse effect using a relationship between atmospheric carbon dioxide and global temperature.

This as a 2-part activity in which students study the properties of CO2 in a lab and then use Web resources to research different types of carbon capture. A video lecture accompanies the activity.

This short video shows how humanity uses energy today; what sources we use; and why, in the future, a growing global population will require more energy.

This video stitches together nine separate videos about energy sources (hydro, coal, geothermal, nuclear, wind, biofuels, solar, natural gas, and oil) from the Switch Energy site. Videos can be viewed as a group, or separately, each under their own title.

In this activity, students compare carbon dioxide (CO2) data from Mauna Loa Observatory, Barrow (Alaska), and the South Pole over the past 40 years to help them better understand what controls atmospheric carbon dioxide. This activity makes extensive use of Excel.

Students conduct an energy audit to determine how much carbon dioxide their family is releasing into the atmosphere and then make recommendations for minimizing their family's carbon footprint. Students are specifically asked to understand the units of power and energy to determine the cost of running various household appliances. Finding the amount of carbon dioxide emitted for different types of energy and determining ways of reducing carbon dioxide output is the outcome of the lesson.

This color-coded map displays a progression of changing five-year average global surface temperatures anomalies from 1880 through 2010. The final frame represents global temperature anomalies averaged from 2006 to 2010. The temperature anomalies are computed relative to the base period 1951-1980.

In this short video, host Dr. Ryan interviews graduate student Amy Steiker at the Institute of Arctic and Alpine Research about her research, using isotopes of nitrous oxide, connecting human activity to greenhouse gas emissions.

Pages