Activity is a Project BudBurst/National Ecological Observatory Network (NEON) exploration of eco-climactic domains, as defined by NEON, by investigating characteristics of a specific domain and studying two representative plants in that domain.

This activity teaches students about the albedo of surfaces and how it relates to the ice-albedo feedback effect. During an experiment, students observe the albedo of two different colored surfaces by measuring the temperature change of a white and black surface under a lamp.

This interactive diagram from the National Academy of Sciences shows how we rely on a variety of primary energy sources (solar, nuclear, hydro, wind, geothermal, natural gas, coal, biomass, oil) to supply energy to four end-use sectors (residential, commercial, industrial, and transportation). It also focuses on lost or degraded energy.

This Motions of the Sun Lab is an interactive applet from the University of Nebraska-Lincoln Astronomy Applet project.

This hands-on activity explores the driving forces behind global thermohaline circulation.

This video describes why tropical ice cores are important and provide different information than polar ice cores, why getting them now is important (they are disappearing), and how scientists get them. The work of glaciologist Lonnie Thompson is featured, with a focus on his work collecting cores of ice from high mountain glaciers that contain significant data about past climate change.

In this experiment, students will observe a natural process that removes carbon dioxide (CO2) from Earth's atmosphere. This process is a part of the carbon cycle and results in temperature suitable for life. Students will learn that the carbon cycle is a fundamental Earth process. Throughout Earth's history, the balance of carbon has kept the atmosphere's carbon dioxide (CO2) and Earth's temperature within relatively narrow ranges.

An interactive that illustrates the relationships between the axial tilt of the Earth, latitude, and temperature. Several data sets (including temperature, Sun-Earth distance, daylight hours) can be collected using this interactive.

This color-coded map displays a progression of changing five-year average global surface temperatures anomalies from 1880 through 2010. The final frame represents global temperature anomalies averaged from 2006 to 2010. The temperature anomalies are computed relative to the base period 1951-1980.

In this lab activity, students use brine shrimp as a proxy for krill to study how environmental factors impact behavioral responses of krill in the unique environment of Antarctica.

Pages