In this activity, students calculate temperatures during a time in the geologic record when rapid warming occurred using a well known method called 'leaf-margin analysis.' Students determine the percentage of the species that have leaves with smooth edges, as opposed to toothed, or jagged, edges. Facsimiles of fossil leaves from two collection sites are examined, categorized, and the data is plugged into an equation to provide an estimate of paleotemperature for two sites in the Bighorn Basin. It also introduces students to a Smithsonian scientist who worked on the excavation sites and did the analysis.

This short video describes the Hestia project - a software tool and data model that provide visualizations of localized CO2 emissions from residential, commercial, and vehicle levels, as well as day versus night comparisons, in the city of Indianapolis.

An interactive that illustrates the relationships between the axial tilt of the Earth, latitude, and temperature. Several data sets (including temperature, Sun-Earth distance, daylight hours) can be collected using this interactive.

This resource is about the urban heat island effect. Students access student-collected surface temperature data provided through the GLOBE program and analyze the data with My World GIS.

This video illustrates conditions under which two infectious diseases - cholera and dengue fever - flourish, and how climate change is likely to exacerbate those conditions.

This video is simple in its appearance, but it contains a wealth of relevant information about global climate models.

This video segment, adapted from NOVA, examines one method scientists use to understand ancient climate conditions in Africa.

This video, from the US Department of Energy, shows the basics of how a PV panel converts light radiated from the sun into usable power, whether on the electric grid or off, and without emissions or the use of fossil fuels.

This video explains what is involved in conducting a home energy audit. Such an audit evaluates how much energy you use in your house and suggests the most cost-effective measures you can take to improve the energy efficiency of your home. The outcomes are the use of less energy resulting in cost-savings on your energy bills.

In this activity, learners observe the effects of the layering of warm and cold water and water that is more or less saline than regular water. They will discover how the effects of salinity and temperature are the root cause of thermohaline layering in the ocean.

Pages