A nicely crafted NASA video on Earth as the water planet, highlighting the value of ocean-observing satellites and the role they play in understanding the global effects of climate change.

This 3-part interactive and virtual lab activity examines the life cycle of the sea urchin, and how the increasing acidity of the ocean affects their larval development.

This video from NASA features scientists who describe the role of salt in the oceans and global oceanic circulation, especially the effect of salinity on the density of water and its global circulation, with reference to global climate change.

This video is part two of a seven-part National Academies series, Climate Change: Lines of Evidence. The video outlines, with the use of recent research and historical data, how we know that the Earth is warming.

This web-based activity tackles the broad reasons for undertaking ocean exploration - studying the interconnected issues of climate change, ocean health, energy and human health. Students examine the types of technology ocean scientists use to collect important data.

In this activity, students review techniques used by scientists, as they analyze a 50-year temperature time series dataset. The exercise helps students understand that data typically has considerable variability from year to year and to predict trends or forecast the future, there is value in long-term data collection.

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

The figure summarizes some of the key variations amongst the six illustrative scenarios used by the Intergovernmental Panel on Climate Change (IPCC) in considering possible future emissions of greenhouse gases during the 21st century.

In this activity, students will use oxygen isotope values of two species of modern coral to reconstruct ambient water temperature over a four-year period. They use Microsoft Excel, or similar application, to create a spreadsheet of temperature values calculated from the isotope values of the corals by means of an algebraic equation. Students then use correlation and regression techniques to determine whether isotope records can be considered to be good proxies for records of past temperatures.

This series of visualizations show the annual Arctic sea ice minimum from 1979 to 2010. The decrease in Arctic sea ice over time is shown in an animation and a graph plotted simultaneously, but can be parsed so that the change in sea ice area can be shown without the graph.

Pages