This video shows where and how ice cores are extracted from the West Antarctic Ice Sheet (WAIS), cut, packaged, flown to the ice core storage facility in Denver, further sliced into samples, and shipped to labs all over the world where scientists use them to study indicators of climate change from the past.

This NBC Learn video features climate scientists doing their research on Mt. Kilimanjaro to study the climate of the past. The scientists put the recently observed changes on the glacier into perspective by comparing past climate fluctuations, stressing that the current observed rate of change is unprecedented.

This interactive displays how climate variables are changing over time (temperature, CO2, Arctic sea ice, solar flux, etc.) in graphical form. Students can examine data over the last 20 years or archived data.

This activity introduces students to global climate patterns by having each student collect information about the climate in a particular region of the globe. After collecting information, students share data through posters in class and consider factors that lead to differences in climate in different parts of the world. Finally, students synthesize the information to see how climate varies around the world.

This animation starts with a schematic illustration of glacier growth and then introduces six different methods that researchers use when studying ice cores in order to deduce the climate of the past. The research methods that are briefly introduced are ice layering, pollen, oxygen isotopes, ice crystals and gases trapped inside, and other chemistry.

This is an interactive graph that involves records of ice cover in two Wisconsin lakes - Lake Mendota and Lake Monona - from 1855-2010.

This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

This short cartoon video uses a simple baseball analogy (steroid use increases probability of hitting home runs) to explain how small increases in greenhouse gases can cause global temperature changes and increase the probability of extreme weather events.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

This National Geographic video explains the origins of the El NiÃo Southern Oscillation using animations and shows the impacts on humans, wildlife and habitat, particularly in the United States.

Pages

Hide [X]