This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

This well-designed experiment compares CO2 impacts on salt water and fresh water. In a short demonstration, students examine how distilled water (i.e., pure water without any dissolved ions or compounds) and seawater are affected differently by increasing carbon dioxide in the air.

This interactive shows the different components of the ocean biological pump, i.e., how carbon in the form of either plankton or particles moves into the ocean's depths. It illustrates the situation at the surface, 0-100 meters, 100-500 meters, and below 500 meters.

This video describes how the normal thousands-of-years-long balance of new ice creation and melting due to ocean currents has been disrupted recently by warmer ocean currents. As a result, glacier tongues that overhang the interface between ice and ocean are breaking off and falling into the ocean.

This static graph of changes in CO2 concentrations is going back 400,000 years, showing the dramatic spike in recent years.

This NASA video provides an introduction to aerosols: their varied sources, brief lifetimes and erratic behavior. Also reviews the GLORY satellite and how it would have helped researchers determine the global distribution of aerosol particles by unraveling the microphysical and chemical properties of aerosols. GLORY failed to reach orbit in May, 2011.

This video segment from 'Earth: The Operators' Manual' explores how we know that today's increased levels of CO2 are caused by humans burning fossil fuels and not by some natural process, such as volcanic out-gassing. Climate scientist Richard Alley provides a detailed step-by-step explanation that examines the physics and chemistry of different "flavors" or isotopes of carbon in Earth's atmosphere.

This interactive follows carbon as it moves through various components of the carbon cycle.

This NASA animation depicts thermohaline circulation in the ocean and how it relates to salinity and water density. It illustrates the sinking of water in the cold, dense ocean near Iceland and Greenland. The surface of the ocean then fades away and the animation pulls back to show the global thermohaline circulation system.

This animation depicts the carbon cycle in a fashion that is suited for younger audiences. The video discusses how carbon enters and exits the environment through both natural and human-driven ways.


Hide [X]