This is a video that discusses how climate feedbacks influence global warming.

This video focuses on the conifer forest in Alaska to explore the carbon cycle and how the forest responds to rising atmospheric carbon dioxide. Topics addressed in the video include wildfires, reflectivity, and the role of permafrost in the global carbon cycle.

This activity describes the flow of carbon in the environment and focuses on how much carbon is stored in trees. It goes on to have students analyze data and make calculations about the amount of carbon stored in a set of trees at three sites in a wooded area that were to be cut down to build a college dormitory.

This is a jigsaw activity in which students are assigned to research one step out of five in the geochemical process stages of the organic carbon cycle. Students then teach their step in cross-step groups until everyone understands all five process stages.

This activity illustrates the carbon cycle using an age-appropriate hook, and it includes thorough discussion and hands-on experimentation. Students learn about the geological (ancient) carbon cycle; they investigate the role of dinosaurs in the carbon cycle, and the eventual storage of carbon in the form of chalk. Students discover how the carbon cycle has been occurring for millions of years and is necessary for life on Earth. Finally, they may extend their knowledge to the concept of global warming and how engineers are working to understand the carbon cycle and reduce harmful carbon dioxide emissions.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.

This video examines how scientists learn about the effects of climate change on the water cycle and what those effects might mean for our planet.

This static graph of changes in CO2 concentrations is going back 400,000 years, showing the dramatic spike in recent years.

Students read an article about the impact of deforestation on the hydrosphere and answer review questions. Students choose two variables and make a prediction. Students pick a previous year to study and use the NASA Earth Observatory (NEO) website to download datasets showing different variables overlaying Rondonia and Mato Grosso, Brazil. Using visual analysis techniques, students explain whether their prediction was confirmed or not during the year in question.

Pages

Hide [X]