This map shows the pattern of thermohaline circulation. This collection of currents is responsible for the large-scale exchange of water masses in the ocean, including providing oxygen to the deep ocean. The entire circulation pattern takes ~2000 years.

In this activity, learners observe the effects of the layering of warm and cold water and water that is more or less saline than regular water. They will discover how the effects of salinity and temperature are the root cause of thermohaline layering in the ocean.

In this activity, students model circulation in gyres, explore characteristics of gyres found around the world, and predict the climate impacts of changes to the circulation in these gyres and climate on adjacent land. Gyres, large systems of rotating ocean currents, play an important role in Earth's climate system.

This activity utilizes labs, online resources, and student ideas to build an understanding of polar climates, how changes in polar oceans can affect coastal climates, and how changes in polar regions affect climates elsewhere on Earth.

This video segment uses data-based visual NOAA representations to trace the path of surface ocean currents around the globe and explore their role in creating climate zones. Ocean surface currents have a major impact on regional climate around the world, bringing coastal fog to San Francisco and comfortable temperatures to the British Isles.

A nicely crafted NASA video on Earth as the water planet, highlighting the value of ocean-observing satellites and the role they play in understanding the global effects of climate change.

This short video from NASA discusses the role that salinity plays in Earth's climate and ocean circulation, focusing on the observations of the Aquarius satellite.

This is a short NASA video on the water cycle. The video shows the importance of the water cycle to nearly every natural process on Earth and illustrates how tightly coupled the water cycle is to climate.

This video highlights research conducted at Woods Hole on how heat absorbed by the ocean and changes of ocean chemistry from human activities could lead to a tipping point for marine life and ecosystems. Includes ice bath experiment that models the tipping point of Arctic sea ice.

This is a video that discusses how climate feedbacks influence global warming.