d. The abundance of greenhouse gases in the atmosphere is controlled by biogeochemical cycles that continually move these components between their ocean, land, life, and atmosphere reservoirs. The abundance of carbon in the atmosphere is reduced through seafloor accumulation of marine sediments and accumulation of plant biomass and is increased through deforestation and the burning of fossil fuels as well as through other processes.

This PBS video shows how Klaus Lackner, a geophysicist at Columbia University, is trying to tackle the problem of rising atmospheric CO2 levels by using an idea inspired by his daughter's 8th-grade science fair project.

This is a video that discusses how climate feedbacks influence global warming.

This activity introduces students to visualization capabilities available through NASA's Earth Observatory, global map collection, NASA NEO and ImageJ. Using these tools, students build several animations of satellite data that illustrate carbon pathways through the Earth system.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

This narrated slide presentation shows the carbon cycle, looking at various parts of this biogeochemical sequence by examining carbon reservoirs and how carbon is exchanged among them and the atmosphere.

With this carbon/temperature interactive model, students investigate the role of atmospheric carbon in the greenhouse effect using a relationship between atmospheric carbon dioxide and global temperature.

In this visualization students can explore North American fossil fuel CO2 emissions at very fine space and time scales. The data is provided by the Vulcan emissions data project, a NASA/DOE funded effort under the North American Carbon Program (NACP).

In this activity, students use a spreadsheet to calculate the net carbon sequestration in a set of trees; they will utilize an allometric approach based upon parameters measured on the individual trees. They determine the species of trees in the set, measure trunk diameter at a particular height, and use the spreadsheet to calculate carbon content of the tree using forestry research data.

This video describes the foundation Plant for the Planet, a foundation created by a 9-year-old German boy, Felix. This foundation has planted more than 500,000 trees in Germany, which he says help sequester carbon and reduce greenhouse gas emissions. The student rallies, first his community and then other children, to plant millions of trees to offset our energy-use emissions.

This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.

Pages