This animation describes how citizen observations can document the impact of climate change on plants and animals. It introduces the topic of phenology and data collection, the impact of climate change on phenology, and how individuals can become citizen scientists.

A detailed Google Earth tour of glacier change over the last 50 years is given in class as an introduction. Students are then asked to select from a group of glaciers and create their own Google Earth tour exploring key characteristics and evident changes in that glacier.

This short video features the Alaska Lake Ice and Snow Observatory Network (ALISON project), a citizen science program in which 4th and 5th graders help scientists study the relationship between climate change and lake ice and snow conditions.

This video features University of Wisconsin-Madison researcher John Magnuson, who studies the ecology of freshwater systems. He explains the difference between weather and climate using data on ice cover from Lake Mendota in Madison, WI. Analysis of the data indicates a long-term trend that can be connected to climate change.

This video discusses how the populous areas west of the Andes are largely desert and rely on glacial meltwater as an important source of fresh water. Because the Peruvian glaciers high in the Andes are in rapid retreat, scientists are monitoring the steadily shrinking glaciers and the impact of their reduction on local populations.

This video provides an excellent summary of the role of the oceans and ocean life and makes the point that despite the important role of life in the oceans, there is still much to be learned about the details of the oceanic biota.

In this EarthLabs activity, learners explore the concepts of coral bleaching, bleaching hot spots and degree-heating weeks. Using data products from NOAA's Coral Reef Watch, students identify bleaching hot spots and degree-heating weeks around the globe as well as in the Florida Keys' Sombrero Reef to determine the impact higher-than-normal sea surface temperatures have on coral reefs.

This video is part two of a seven-part National Academies series, Climate Change: Lines of Evidence. The video outlines, with the use of recent research and historical data, how we know that the Earth is warming.

This short NASA video focuses on the Aquarius satellite, launched on June 10, 2011 to observe how variations in ocean salinity relate to climatic changes. By measuring salinity globally, Aquarius shows the ocean's role in climate change and climate's effects on ocean circulation.

In this activity, learners use the STELLA box modeling software to determine Earth's temperature based on incoming solar radiation and outgoing terrestrial radiation. Starting with a simple black body model, the exercise gradually adds complexity by incorporating albedo, then a 1-layer atmosphere, then a 2-layer atmosphere, and finally a complex atmosphere with latent and sensible heat fluxes. With each step, students compare the modeled surface temperature to Earth's actual surface temperature, thereby providing a check on how well each increasingly complex model captures the physics of the actual system.

Pages