In this intermediate Excel activity, students import US Historical Climate Network mean temperature data into Excel from a station of their choice. They are then guided through the activity on how to use Excel for statistical calculations, graphing, and linear trend estimates. The activity assumes some familiarity with Excel and graphing in Excel.

This video from a 2005 NOVA program features scientists who study how the Jakobshavn Isbrae glacier in western Greenland is shrinking and moving faster due to increased melting over the past ten years. The video includes footage of scientists in the field explaining methods and animation of ice sheet dynamics leading to faster glacier movement.

This PBS video focuses on sea level rise in Norfolk, Virginia and how the residents are managing the logistical, financial and political implications. Science journalists who have been studying Norfolk's rising sea level problems are interviewed as well are local residents who are being impacted.

This video shows 15 years of data obtained via Polar-orbiting satellites that are able to detect subtle differences in ocean color, allowing scientists to see where there are higher concentrations of phytoplankton - a proxy for the concentration of chlorophyll in the ocean.

This short video describes how the compression of Antarctic snow into ice captures air from past atmospheres. It shows how ice cores are drilled from the Antarctic ice and prepared for shipment and subsequent analysis.

This in-depth interactive slideshow about how climate models work is embedded with a lot of background information. It also describes some of the projected climate change impacts to key sectors such as water, ecosystems, food, coasts, health. (scroll down page for interactive)

This animation shows predicted changes in temperature across the globe, relative to pre-industrial levels, under two different emissions scenarios in the COP 17 climate model. The first is with emissions continuing to increase through the century. The second is with emissions declining through the century.

In this activity, students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). While becoming more familiar with the physical processes that made Earth's early climate so different from that of today, they also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

This video segment describes climate data collection from Greenland ice cores that indicate Earth's climate can change abruptly over a single decade rather than over thousands of years. The narrator describes how Earth has undergone dramatic climate shifts in relatively short spans of time prior to 8000 years ago. The video and accompanying essay provide explanations of the differences between weather and climate and how the climate itself had been unstable in the past, with wide variations in temperature occurring over decadal timescales.