Instrumental measurements, proxy data, climate model projections

This activity introduces students to visualization capabilities available through NASA's Earth Observatory, global map collection, NASA NEO and ImageJ. Using these tools, students build several animations of satellite data that illustrate carbon pathways through the Earth system.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns and to understand annual sediment deposition and how it relates to weather and climate patterns.

In this learning activity, students use a web-based geologic timeline to examine temperature, CO2 concentration, and ice cover data to investigate how climate has changed during the last 715 million years.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

This is a video that documents the reflections of members of the Steger International Polar Expedition team reunited at the 25th anniversary of their landmark trek to the Arctic, and how climate change has made their trek difficult to replicate.

Students read an article about the impact of deforestation on the hydrosphere and answer review questions. Students choose two variables and make a prediction. Students pick a previous year to study and use the NASA Earth Observatory (NEO) website to download datasets showing different variables overlaying Rondonia and Mato Grosso, Brazil. Using visual analysis techniques, students explain whether their prediction was confirmed or not during the year in question.

In this lesson, students explore several facets of the impact of volcanic eruptions on the atmosphere. Students analyze three types of visual information: a graph of aerosol optical depth v. global temperature, a global map with temperature anomalies, and an ash plume photograph. In the hands-on activity, students use math to determine the rate and estimated time of arrival of an ash plume at an airfield.

In this 3-part lesson, students explore California climate and factors that are leading to changes within this climate system. Students begin by exploring California's climate and the state's topography. Next, they investigate coastal versus inland climate. Finally, they use My NASA Data to explore the effects of El NiÃo/La NiÃa on two locations found at the same latitude.

This is an interactive map of California and the Sierra Nevada mountains, showing projected variations in water stored in snowpack, from 1950 to 2090, assuming low or high emission scenarios over that period of time. Interactive can be adjusted to show different months of the year and various climate models, graphed by site.

This interactive visualization provides a clear, well-documented snapshot of current and projected values of several climate variables for local areas in California. The climate variables include observed and projected temperatures, projected snowpack, areas vulnerable to flooding due to sea level rise, and projected increase in wildfires. The projected values come from expert sources and well-established climate models.

Pages

Hide [X]